Thursday, September 27, 2007

豆腐文摘特辑:Raman Spectroscopy of SWNTs

【按:这里收录的是对搞碳管化学的同志们相当有用的部分SWNT Raman文章。收录当然远非完整,但是足够大家了解SWNT Raman的概念和用途。我自己会继续更新,也欢迎大家补充。】

Discovery:

Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C.; Williams, K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A.; Smalley, R. E.; Dresselhaus, G.; Dresselhaus, M. S.
Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science 1997, 275, 187-191.

Reviews:

Principles and Overview:

1. Dresselhaus, M. S.; Eklund, P. C. Phonons in carbon nanotubes. Adv. Phys. 2000, 49, 705-714.

2. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47-99. [Thanks to flowingsue @ mitbbs]

3. Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A. Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007. J. Phys. Chem. C. 2007, ASAP article published on 10/02/2007.

Single-nanotube Raman:

1. Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A.; Souza Filho, A. G.; Pimenta, M. A.; Saito, R.
Single Nanotube Raman Spectroscopy. Acc. Chem. Res. 2002, 35, 1070.

2. Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A.; Souza, A. G.; Samsonidze, G. G.; Saito, R. Science and Applications of Single-Nanotube Raman Spectroscopy. J. Nanosci. Nanotechnol. 2003, 3, 19-37.

Popular Topics for Carbon Nanotube Chemists:

The Original Kataura Plot (Widely Used as Raman Guidance):

Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y.
Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555-2558.

Mutliple Wavelength Excitation:

1. Kukovecz, A.; Kramberger, C.; Georgakilas, V.; Prato, M.; Kuzmany, H. A detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process. Eur. Phys. J. B 2002, 28, 223-230.

2. Fantini, C.; Jorio, A.; Souza, M.; Strano, M. S.; Dresselhaus, M. S.; Pimenta, M. A.
Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects. Phys. Rev. Lett. 2004, 93, 147406.

Diameter Determination from Radial Breathing Mode (RBM):

Kuzmany, H.; Plank, W.; Hulman, M.; Kramberger, C.; Gruneis, A.; Pichler, T.; Peterlik, H.; Kataura, H.; Achiba, Y. Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur. Phys. J. B 2001, 22, 307-320.

Chirality (n,m) Assignment from RBM:

1. Yu, Z.; Brus, L. E. (n, m) Structural Assignments and Chirality Dependence in Single-Wall Carbon Nanotube Raman Scattering. J. Phys. Chem. B 2001, 105, 6831-6837.

2. Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S. Structural (n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering. Phys. Rev. Lett. 2001, 86, 1118-1121.

3. Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weiseman, R. B. Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. Science 2002, 298, 2361-2366.

4. Strano, M. S.; Doorn, S. K.; Haroz, E. H.; Kittrell, C.; Hauge, R. H.; Smalley, R.E. Assignment of (n, m) Raman and Optical Features of Metallic Single-Walled Carbon Nanotubes. Nano Lett. 2003, 3, 1091-1096.

Breit-Wigner-Fano shape of G-band:

1. Pimenta, M. A.; Marucci, A.; Empedocles, S. A.; Bawendi, M. G.; Hanlon, E. B.; Rao, A. M.; Eklund, P. C.; Smalley, R. E.; Dresselhaus, G.; Dresselhaus, M. S. Raman modes of metallic carbon nanotubes. Phys. Rev. B 1998, 58, R16016.

2. Brown, S. D. M.; Jorio, A.; Corio, P.; Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Kneipp,
K. Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys. Rev. B 2001, 63, 155414.

Applications in Characterization of Chirality/Metallicity Separation:

1. Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F. A Route for Bulk Separation of Semiconducting from Metallic Single-Wall Carbon Nanotubes. J. Am. Chem. Soc. 2003, 125, 3370-3375.

2. Strano, M. S. Probing Chiral Selective Reactions Using a Revised Kataura Plot for the Interpretation of Single-Walled Carbon Nanotube Spectroscopy. J. Am. Chem. Soc. 2003, 125, 16148-16153.

3. Samsonidze, G. G.; Chou, S. G.; Santos, A. P.; Brar, V. W.; Dresselhaus, G.; Dresselhaus, M. S.; Selbst, A.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Chattopadhyay, D.; Kim, S. N.;
Papadimitrakopoulos, F. Quantitative evaluation of the octadecylamine-assisted bulk separation of semiconducting and metallic single-wall carbon nanotubes by resonance Raman spectroscopy. Appl. Phys. Lett. 2004, 85, 1006-1008.

4. Brar, V. W.; Samsonidze, G. G.; Santos, A. P.; Chou, S. G.; Chattopadhyay, D.; Kim, S. N.; Papadimitrakopoulos, F.; Zheng, M.; Jagota, A.; Onoa, G. B.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Dresselhaus, G.; Dresselhaus, M. S. Resonance Raman Spectroscopy Characterization of Single Wall Carbon Nanotube Separation by their Metallicity and Diameter. J. Nanosci. Nanotechnol. 2005, 5, 209.

Tuesday, September 25, 2007

豆腐文摘:09/25/07

Small

Volume 3, Issue 10 (October 1, 2007)

1. Formation, Structure, and Polymorphism of Novel Lowest-Dimensional AgI Nanoaggregates by Encapsulation in Carbon Nanotubes (p 1730-1734)
Matteo Baldoni, Stefano Leoni, Antonio Sgamellotti, Gotthard Seifert, Francesco Mercuri Published Online: 11 Sep 2007 DOI: 10.1002/smll.200700296
Abstract References Full Text: HTML, PDF (Size: 708K)

2. In Situ Raman Spectroelectrochemical Study of 13C-Labeled Fullerene Peapods and Carbon Nanotubes (p 1746-1752)
Martin Kalbá, Ladislav Kavan, Markéta Zukalová, Lothar Dunsch
Published Online: 13 Sep 2007 DOI: 10.1002/smll.200700157
Abstract References Full Text:HTML,PDF (Size: 198K)

3. Magnetophoretic Continuous Purification of Single-Walled Carbon Nanotubes from Catalytic Impurities in a Microfluidic Device (p 1784-1791)
Joo H. Kang, Je-Kyun Park
Published Online: 24 Sep 2007 DOI: 10.1002/smll.200700334
Abstract References Full Text:HTML,PDF (Size: 618K)

4. Hairy Single-Walled Carbon Nanotubes Prepared by Atom Transfer Radical Polymerization (p 1803-1810)
Wei Wu, Nicolay V. Tsarevsky, Jared L. Hudson, James M. Tour, Krzysztof Matyjaszewski, Tomasz Kowalewski
Published Online: 13 Sep 2007 DOI: 10.1002/smll.200600688
Abstract References Full Text:HTML,PDF (Size: 799K)

Monday, September 24, 2007

访客数1001留念 :-)

豆腐文摘:09/24/07

JACS
Photoluminescence Recovery from Single-Walled Carbon Nanotubes on Substrates
Liming Xie, Cui Liu, Jin Zhang, Yongyi Zhang, Liying Jiao, Lai Jiang,, Lun Dai, and Zhongfan Liu

Web Release Date: 22-Sep-2007; (Communication) DOI: 10.1021/ja074927b
Abstract Full: HTML / PDF (149K) Supporting Info

【简评】

量子产率本就不高的碳管的能带荧光很容易受到各种因素的干扰而被淬灭,所以通常这种荧光只能在单分散(基本上没有bundle)的“溶液”(用表面活性剂或者功能化分子)里或者是物理悬浮(吊在两个支撑点之间)被观察到。同理,直接CVD到底物(substrate)上的管子通常是看不到荧光的,而在这篇文章里,CVD到某底物上长出来的很长的单壁管用一种高分子“粘贴-转移”技术("peel and transfer")转移到用不同长度的碳链修饰的SiO2表面 - 单壁管的荧光此时显示出来(用Raman仪器):碳链越长(18C>6C>2C),荧光效率越高(或者被淬灭程度越低)。

几个问题:

  • 文章没有对所激发的管子的(n,m)做出任何讨论;究竟可能是哪有几种管子被激发这个问题有没有意义?
  • 不同碳链修饰的表面上显示的荧光峰值都有些许不同。这种不同有多少意义?
  • 对于一个半径为~1.1-1.2nm的SWNT(根据SI的Raman RBM ~195cm-1计算),它的E11发射峰应该在less than 1500nm,激发在700-800nm;而文中的激发为633 nm(He-Ne),发射在1550 nm (Figure1的mapping是用的1580-1630nm的累积),这些是不是有些偏差?

请各位指正。


JPCC

Novel Method to Evaluate the Carbon Network of Single-Walled Carbon Nanotubes by Hydrogen Physisorption
Shinya Iwata, Yoshinori Sato, Kouta Nakai, Shohei Ogura, Tatsuo Okano, Masaru Namura, Atsuo Kasuya, Kazuyuki Tohji, and Katsuyuki Fukutani

Web Release Date: 22-Sep-2007; (Letter) DOI: 10.1021/jp076275j
Abstract Full: HTML / PDF (310K) Supporting Info

【简评】

大家都知道氢分子在SWNT上的吸附位置和吸附能有密切关系。本文利用了这种不同,用测量低温下(10-40K)氢在纯化后的单壁管上的吸附量-温度变化图来试图表达其与SWNT的缺陷度的关系。这自然是个很有趣的办法来表征SWNT缺陷,但是对sp3/sp2 ratio来说用Raman肯定更简单直接些;然而,如果考虑到SWNT的bundle程度也许可以用此法表征(表面vs管间吸附),那么Raman是万万不行的。

Nano Letters
1. Strain Tuning of the Photocurrent Spectrum in Single-Wall Carbon Nanotubes
Prasanth Gopinath, Aditya Mohite, Hemant Shah, Ji-Tzuoh Lin, and Bruce W. Alphenaar

Web Release Date: 21-Sep-2007; (Letter) DOI: 10.1021/nl071582m
Abstract Full: HTML / PDF (1040K)


2. Three-Dimensional Morphology of GaP-GaAs Nanowires Revealed by Transmission Electron Microscopy Tomography
Marcel A. Verheijen, Rienk E. Algra, Magnus T. Borgström, George Immink, Erwan Sourty, Willem J. P. van Enckevort, Elias Vlieg, and Erik P. A. M. Bakkers
Web Release Date: 21-Sep-2007; (Letter) DOI: 10.1021/nl071541q
Abstract Full: HTML / PDF (244K) Supporting Info

Thursday, September 20, 2007

豆腐文摘:09/20/07

Small

Direct Enrichment of Metallic Single-Walled Carbon Nanotubes Induced by the Different Molecular Composition of Monohydroxy Alcohol Homologues

Volume 3, Issue 9 (September 3, 2007) (p 1486-1490)

Yu Wang, Yunqi Liu, Xianglong Li, Lingchao Cao, Dacheng Wei, Hongliang Zhang, Dachuan Shi, Gui Yu, Hisashi Kajiura, Yongming Li

Published Online: 13 Aug 2007 DOI: 10.1002/smll.200700241

Abstract References Full Text:HTML,PDF (Size: 680K)

【简评】此文在《豆腐文摘:08/28/07》已收录,但是彼时没有时间八。今天看到黄兄的简述,决定细读一下。

文章要点:

(1) 用低碳单羟基醇(乙醇 - 正戊醇)作为碳源做CVD制造SWNTs。

(2) 用Raman (1.96eV,RBM & G)、吸收光谱、电计数(electrical breakdown)三种方法来定性(前两者)乃至半定量(电计数)地说明metallic SWNTs和醇碳源碳原子数目的关系:

  • (i) 醇碳原子数越多,得到的metallic SWNTs的百分比越高(e.g. 乙醇:42%;正戊醇:65%)。
  • (ii) 醇的同分异构体(三种丁醇的同分异构体:57%)不影响结果。
  • (iii) 此法制造的metallic SWNT似乎普遍高于1/3的理论含量。
(3) 文章解释:


  • (i) CVD条件下产生的OH自由基选择性地etch metallic SWNTs;
  • (ii) 高碳原子数的醇在CVD中容易形成更多的无定形碳对管子具有更好的保护作用;此过程和碳原子数有关,和碳链构造无关。
  • (iii) 因为(i)和(ii),高碳原子数的醇产生的metallic SWNTs受到更好的保护,所以百分比更高。醇的同分异构体对结果没有影响。

意见:

首先向文章对碳管金属性差异的完整表征致敬:现在类似的文章通常就用其中的一种或两种(Raman/absorption),而很少用Hongjie Dai组的电计数方法(Li, et al., Nano Lett, 2004, 4, 317-321)。这样的表征尽职尽责,无论结果是否让人100%信服,至少诚意是让人没有话说的。

Raman RBM:做成3-D的模样看起来是sexy(做TOC可以),但是在文章里还是不如直接叠在一起来得直观。另外,请注意340cm-1的那个峰(Figure 3a & 6) - 大约对应于是产品里直径最小的semiconducting SWNT - 的行为有些奇怪:强度随着醇的碳原子数增加而增加,在以两个支链的丁醇做碳源的产品里比正丁醇要弱得多。

Optical Absorption:其实不完全符合 - 正戊醇的产品的M11峰并非最高,S11/S22峰也非最低。还有,这几条谱的normalization过程没有介绍。

Counting based on electrical breakdown:这个方法由于中间牵扯的其他无关过程(比如用DMF分散,再做成device)太多,所以统计准确性还值得考虑。但无论如何,这大概是目前最好的统计方法了。

上述意见只是想法,应该完全不影响文章的结论。

文章的机理讨论部分听起来似乎很有道理,当然要等待更多的实验验证:

  • (1) 用直接产生OH自由基的试剂etch一下?
  • (2) 戊醇的几种同分异构体的结果是不是类似?
  • (3) 用碳链更多的醇是不是得到的metallic SWNTs百分比更高?Amorphous carbon的百分比如何?

Wednesday, September 19, 2007

豆腐文摘: 09/19/07

JACS
1. Solution-Based Growth and Structural Characterization of Homo- and Heterobranched Semiconductor Nanowires
Angang Dong, Rui Tang, and William E. Buhro
Web Release Date: 19-Sep-2007; (Article) DOI: 10.1021/ja0737772
Abstract Full: HTML / PDF (1602K) Supporting Info


2. Giant Enhancement in UV Response of ZnO Nanobelts by Polymer Surface-Functionalization
Chang Shi Lao, Myung-Chul Park, Qin Kuang, Yulin Deng, Ashok K. Sood, Dennis L. Polla, and Zhong L. Wang
Web Release Date: 19-Sep-2007; (Communication) DOI: 10.1021/ja075249w
Abstract Full: HTML / PDF (83K) Supporting Info

JPCC

Pressure-Induced Single-Walled Carbon Nanotube (n,m) Selectivity on Co-Mo Catalysts
Bo Wang, Li Wei, Lu Yao, Lain-Jong Li, Yanhui Yang, and Yuan Chen
Web Release Date: 19-Sep-2007; (Letter) DOI: 10.1021/jp0762525
Abstract Full: HTML / PDF (352K) Supporting Info

Nano Letters

1. Structure-Dependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes

Dmitri A. Tsyboulski, John-David R. Rocha, Sergei M. Bachilo, Laurent Cognet, and R. Bruce Weisman

Web Release Date: 19-Sep-2007; (Letter) DOI: 10.1021/nl071561s
Abstract Full: HTML / PDF (158K) Supporting Info

2. Gallium Phosphide Nanowires as a Substrate for Cultured Neurons
Waldemar Hällström, Thomas Mårtensson, Christelle Prinz, Per Gustavsson, Lars Montelius, Lars Samuelson, and Martin Kanje
Web Release Date: 19-Sep-2007; (Letter) DOI: 10.1021/nl070728e
Abstract Full: HTML / PDF (820K)

Tuesday, September 18, 2007

豆腐文摘: 09/18/07

Chem. Commun.

1. Amino acid functionalization of double-wall carbon nanotubes studied by Raman spectroscopy
Gabriele Marcolongo, Giorgio Ruaro, Marina Gobbo and Moreno Meneghetti,
Chem. Commun., 2007, DOI: 10.1039/b711249a

2. Polymer-masking for controlled functionalization of carbon nanotubes
Liangti Qu and Liming Dai,
Chem. Commun., 2007, 3859. DOI: 10.1039/b707698c

J. Mater. Chem.

Orientated assembly of single-walled carbon nanotubes and applications
Limin Huang, Zhang Jia and Stephen O'Brien
J. Mater. Chem., 2007, 17, 3863 - 3874, DOI: 10.1039/b702080e

Monday, September 17, 2007

豆腐文摘: 09/17/07

Nano Letters

Toward the Extraction of Single Species of Single-Walled Carbon Nanotubes Using Fluorene-Based Polymers
Fuming Chen, Bo Wang, Yuan Chen, and Lain-Jong Li


Web Release Date: 15-Sep-2007; (Letter) DOI: 10.1021/nl071349o
Abstract Full: HTML / PDF (369K) Supporting Info

【简评】
按手性/电性分离单壁管是既是一个非常美妙的话题,也是一块非常难啃的骨头。这个领域逐渐从三、四年前的混乱期逐渐走进了现在的理性期,实验结果能够引起的争论也会因为现在的表征手法相对成熟和稳定而越来越少,虽然相当种类的分离方式的实验机理依旧不甚明朗。和早期的碳管功能化化学一样,机理方面的模糊并不影响更多有用的方法出现。只要分离效果好,实验过程明白,实际可行性(比如scale-up)有希望,那么把机理暂时当成个黑箱也许并不是坏处。

新加坡南洋理工大学的几位学者用fluorene-based polymers(比如PFO)做单壁管的wrapping,发现了一些针对于semiconducting SWNT的有趣的选择性(文中对semiconducting vs metallic的选择性没有进行讨论)。

对于本身直径分布较窄的CoMCM41-SWNTs(类似CoMoCAT的管子 - (7,5)和(6,5)的管子比较多),PFO的wrapping似乎非常有效,(和SDBS(表面活性剂)悬浮的SWNT溶液相比)PFO-wrapped SWNT溶液的荧光谱显示(7,5)-SWNTs在semiconducting SWNTs中似乎能够达到~80%的丰度(参见上面的TOC右图)。这个结果似乎比Mark Hersam等用离心力分离法观察到的效果稍好(Nat. Nanotechnol. 2006, 1, 52),而和Ming Zheng的离子交换色谱法的结果看起来类似(JACS 2004, 126, 15490)。

虽然对分布宽得多的HiPco-SWNT(~0.7-1.3 nm)中的(7,5)管子没有相似的高选择性,但是观察到的另外一种选择性仍然有趣 (参见上面的TOC左图):
  • (1) 两种fluorene polymer对手性角度(chiral angle)高的管子(手性接近于金属管,或者说n/m比较接近)选择性高;
  • (2) 另一种fluorene polymer(PFO-BT)对某个直径的管子(1.03-1.07nm)有特殊的爱好,特别是(10,5)管子。
分离PFO(etc.)-suspended SWNTs用的是高速离心。既然这样,这种方法始终就有scale-up的大问题 - 当然如果scale-up是有必要的话。上面提到的Zheng和Hersam的方法也有类似的局限。

其实现在能够发现有这样美妙的选择性就已经远远足够了;局限嘛,当然是用来在将来突破的。

虽然和本文关系不大,但是我还是想到一直困惑着我的问题:
  • 既然荧光谱都是来和SDBS-suspended SWNT对照,那么SDBS(还有SDS等等表面活性剂)本身对管子有没有选择性?有多少选择性?说不定,PFO(etc.)-suspended SWNT的荧光谱等才是原料中的真正丰度图,SDBS却有一些奇怪的选择性呢。
  • 每种管子的量子产率相同吗?像Raman的RBM一样,我们看到的美丽的3维荧光谱图是否会对实际丰度有直观和实际上的误导?
记得'04年春季的ACS会议,我当面问Bruce Weisman博士类似的问题,他用了"democratic"这个词来形容,意思是SDS对何种管子能够进到溶液里是一个基本上“民主”的没有选择性的过程 - 虽然我相信他当时并没有实验证据。

现在有相关的文献了吗?有没有朋友一起讨论一下?

Friday, September 14, 2007

碳纳米管化学纪事(七)

【按:作者本人的研究经历从时间上基本上从第(六)部分切入,即使尽量客观,但未免主观性会比前五章大大提高 -(六)引起各位的有趣争议便是明证。今后章节主观性会更甚之,所以还请列位看官们各自心里有数,发现不恰当之处,砖头大可随便砸将来。上次的争论搁置一旁,为简便起见,除非特殊情况或另有所指,我下面描述功能化的碳管溶液/悬浮液/分散体系时,将统统用“溶液”一词表示。】


(七)战斗 part 2 - 疑虑

期碳管化学(主要指端基/缺陷羧基功能化) - 特别是溶剂化(solubilization)化学遇到最严重的怀疑其实并非是“溶液”还是“悬浮液”还是“分散体系”的争论,而来自这透明带颜色的溶液本身 - 这里面的溶质到底是什么?

为什么会有这样的问题?听我细细道来。

在制造方法仍远未成熟的当年,从炉子里掏出来的单壁碳管粗产物本身十分垃圾,长短不齐和大小不均倒是其次 - 这纳米管自己永远的问题后面再说 - 最讨厌的是粗产物里总是有无定形碳和通常包含着金属的碳粒(或者叫碳葱,碳纳米颗粒...)。对于多壁管,在CVD法还未普及时,刚开始时用做功能化的起始物则主要是从电弧法而来 - 这粗产物里虽然没有金属,但是含有大量的让人头疼之极的碳葱 - 它们和多壁管几乎同样稳定(溶剂化产率还极低)。

化学法的酸煮和空气的“选择性”氧化也好,物理法的过滤、离心、色谱也好,化学物理法的排列组合也好,什么都试过了,效果终究是不理想。很多筒子都“昧着良心”凭着一两张电镜照片吹嘘自己的管子纯度在95%以上,然而彼此的心里大概都心照不宣。

由于纯化工艺本身就是门大学问,所以碳管化学的发展实际上和前者的发展是同步进行的。这样一来,那时大部分做单壁碳管化学的科学家们通常都用最简便的“纯化”方法 - 稀硝酸煮上一两天。稀硝酸一是能够大致除去不少无定形碳,同时能够消灭裸露的金属(被碳层包住的就继续存在着),二是能够在碳管两端和表面缺陷处引入含氧官能团 - 主要是羧基(有时用盐酸后处理以加强羧基的形成)。这样的“纯化后”的管子便可以拿来做功能化了。

大家这里注意一点:“纯化后”的管子叫"purified nanotubes"而不叫"pure nanotubes",为什么?因为所谓"purified",意思就是管子经过纯化而已,至于到底纯不纯("pure"),那就是“天晓得”了。所以,我们一听到有人说"pure nanotubes"的时候,浑身总是会长满鸡皮疙瘩。
事实上,这"purified nanotubes"里不但有羧基-碳管,其实还有羧基-(包含金属或不包含金属的)碳葱和羧基-无定形碳。既然大家都是碳,那么直觉上讲,当然小的东西 - 无定形碳和碳葱类 - 会更容易反应了。

这里要说明一点:那时不但功能化反应手段和后处理(溶剂萃取)过程不成熟,各种表征办法也完全不成熟(考虑到转行做碳管化学的筒子们很多都是做有机化学的)。功能化和溶剂化(functionalization and solubilization)的实验通常只有少量的起始物被“溶解”(soluble fraction),而会留下大量“不溶解组分”(insoluble residue)。通常,由于功能化分子的“吸附”作用,“不溶解组分”的质量甚至会比起始物更高,直接的化学计量完全没有意义(此时热失重法测量管子含量还未被采用)。

既然小的垃圾们比大的管子们更容易反应,而且最后“不溶解组分”又那么多,那么回到本章开始的问题:这透明带颜色的溶液本身 - 这里面的那一点点溶质到底是什么?
照说碳管的拉曼光谱是很有特点的 - 特别是单壁管独特的RBM (radial breathing mode)特征峰。然而,有垃圾存在的碳管溶剂化后出现的强烈的荧光干扰(是从垃圾还是碳管自己来的这另外再谈)让RBM甚至G-band/D-band (这俩峰多壁管都有)的识别都同样出现很大的困难。其实唯一拿得出手的实验证据其实只有单壁管的近红外特征峰(参见Haddon博士的1998年Science之作);而倒霉的多壁管则完全没有这样的特征峰。

“那就用显微镜呗。”您肯定会说。

可是由于(1)功能化效率低(溶剂化产率低;产物溶液量少、浓度低),(2)垃圾们(无定形碳和碳粒,还有用作功能化的未反应的分子)的大量存在,因此彼时的透射电镜/原子力显微镜下是满目疮痍,完全找不到数量上有意义的碳管(大约被埋在垃圾堆里)。当年的显微镜照片基本上都是:

  • “Look!Look!有根管子!看见了没?”
  • “我看,我看 - 哪儿呢?哪儿呢?”
  • “这儿哪!”
  • “靠,还挺像。”

当年(~2000年),包括我在内的部分筒子们便因为过不去“眼见为实”这道关而被活活卡住了。“碳管真的能够被溶解吗?还是只有无定形碳和碳粒在你的过程中被溶解了?”审稿人们这样不断质疑的时候,我们也开始怀疑起自己来。

我们突然发现:原来,自己的疑虑才是我们最大的敌人和最重要的斗争对象。

(未完待续)

豆腐文摘:09/14/07

Chem. Commun.
Supramolecular single-walled carbon nanotubes (SWCNTs) network polymer made by hybrids of SWCNTs and water-soluble calix[8]arenes

Tomoki Ogoshi, Tada-aki Yamagishi and Yoshiaki Nakamoto
Chem. Commun., 2007. DOI: 10.1039/b711800g

Chem. Eur. J.
The Isolation of Basic Proteins by Solid-Phase Extraction with Multiwalled Carbon Nanotubes
Zhuo Du, Yong-Liang Yu, Xu-Wei Chen, Jian-Hua Wang
Published Online: 13 Sep 2007 DOI: 10.1002/chem.200700784
Abstract References Full Text:PDF (Size: 420K)

Nano Lett.
A General Approach for Transferring Hydrophobic Nanocrystals into Water
Tierui Zhang, Jianping Ge, Yongxing Hu, and Yadong Yin

Web Release Date: 14-Sep-2007; (Letter) DOI: 10.1021/nl071928t
Abstract Full: HTML / PDF (660K) Supporting Info

Small
1. Viability Studies of Pure Carbon- and Nitrogen-Doped Nanotubes with Entamoeba histolytica: From Amoebicidal to Biocompatible Structures (p NA)
Ana Laura Elías, Julio César Carrero-Sánchez, Humberto Terrones, Morinobu Endo, Juan Pedro Laclette, Mauricio Terrones
Published Online: 11 Sep 2007 DOI: 10.1002/smll.200700331
Abstract References Full Text:PDF (Size: 1137K)

2. Formation, Structure, and Polymorphism of Novel Lowest-Dimensional AgI Nanoaggregates by Encapsulation in Carbon Nanotubes (p NA)
Matteo Baldoni, Dr- Stefano Leoni, Antonio Sgamellotti, Gotthard Seifert, Francesco Mercuri
Published Online: 11 Sep 2007 DOI: 10.1002/smll.200700296
Abstract References Full Text:PDF (Size: 994K)

Wednesday, September 12, 2007

综述推荐:Golberg & Bando et al. "BNNTs"

Boron Nitride Nanotubes
D. Golberg, Y. Bando, C. C. Tang, C. Y. Zhi
Adv. Mater. 2007, 19 (18), p 2413-2432.
Published Online: 22 Aug 2007 DOI: 10.1002/adma.200700179
Abstract References Full Text: PDF (Size: 1450K)

豆腐文摘:09/12/07

Adv. Mater.

The Role of Carboxylated Carbonaceous Fragments in the Functionalization and Spectroscopy of a Single-Walled Carbon-Nanotube Material
C. G. Salzmann, S. A. Llewellyn, G. Tobias, M. A. H. Ward, Y. Huh, M. L. H. Green
2007, Volume 19, Issue 6, p 883-887.
Published Online: 13 Feb 2007 DOI: 10.1002/adma.200601310
Abstract References Full Text: PDF (Size: 234K)

【简评】感谢Synthon拉出这篇好文章。

仔细读了一下Adv. Mater.的这篇碎片理论 - Green是挂名,同是牛津的Salzmann是通讯作者。看得出来作者有很多先入为主的观点,于是所有的实验现象描述都是围绕着自己服务的。

实验要点

1. 硝酸处理强度:大致为medium。硝酸为9M - ~45%,24h@100C(通常要回流可能温度要设高些...)。作为比较,做进一步功能化的同学们处理碳管一般用2.6M - 14%的硝酸回流(加热套温度~140-160oC)24-48小时。
2. 分离“碎片”:过滤并用碱液清洗硝酸处理过的混合物。
3. 表征:Raman (主要讨论D/G ratio,其实RBM也很重要),红外 (这个基本上是唬人)。

最重要的一点,作者认为,这滤液即为“碎片”液。我当然不反对留在滤纸上的东西绝大部分是碳管,但是这滤液里绝对有疑点:

(1)这过滤下去的“碎片”就完全是碳渣子?短碳管如何?同样溶解性高的碳管(也就是被硝酸功能化多的碳管)又如何?用碱液轻松悬浮硝酸处理的碳管可不是新闻,参见顾镇南老师2000年在Chem.Commun.的文章("Single-wall carbon nanotube colloids in polar solvents": CHEMICAL COMMUNICATIONS (6): 461-462 2000)。

(2)Raman谱:没错,悬浮起来的“碎片”有强荧光,Raman峰看不见了。这当然也不是新闻。Ya-Ping Sun博士的很多文章里详细讨论过这个现象 - 特别是功能化后的管子(e.g. Acc. Chem. Res. 2002, 35, 1096.):只要把这些碎片加加热,把表面官能团除去,荧光消失,Raman峰也就回来了。那么,这个时候看看“碎片”的Raman谱有没有radial breathing mode - 如果完全没有,那么作者的argument就会强上几级。

到底是碳管被功能化还是其他的垃圾被功能化这个问题伴随了这么多年,还是没有得到完美的答案。碳管表面的垃圾被功能化 - 而非碳管本身被功能化 - 这一可能性确实也仍然困扰着我自己和其他很多领域中人。

不可否认,这篇实验做得相当仔细的文章(以挫败我等为己任,呵呵)是一次有益的尝试,也肯定会引发大家的认真思考。作者的观点和他们的实验结果当然是consistent。他们的说法只是是一种解释,然而是不是唯一解释?从目前给出的实验证据讲,我个人的观点是不见得。

科学当然永远充满争论,只是希望我们能够对每个结果谨慎对待。

Tuesday, September 11, 2007

豆腐文摘:09/11/07

Nano Letters

Local Surface Charges Direct the Deposition of Carbon Nanotubes and Fullerenes into Nanoscale Patterns

Livia Seemann, Andreas Stemmer, and Nicola Naujoks

Web Release Date: 11-Sep-2007; (Letter) DOI: 10.1021/nl0713373
Abstract Full: HTML / PDF (531K) Supporting Info

Monday, September 10, 2007

科学和排名

所谓Impact Factor,"often abbreviated IF, is a measure of the citations to science and social science journals." (Wikipedia Definition)

所谓H-Index,"is a hybrid index that quantifies scientific productivity and impact of a scientist based on the set of his/her most quoted papers and the number of citations that they have received in other people's publications." (Wikipedia Definition)

名这个东西,永远都有人热衷。

古时候有好汉和武林高手排名,比如李元霸排名第一,秦叔宝并列第十三什么的;比如周伯通/王重阳第一,然后下面四个谁谁谁什么的。现代也有各种各样的排名:比如哪个NBA球队战绩好、哪部电影好看、哪个歌手的唱片卖得多什么的。


只是不是所有的事情都可以拿来排名的。我以为,科学就不是可以排名的。

研究science的scientist发明的"Impact Factor"和研究scientists的scientist发明的"H-index",本意大致是分别寻找一个科学的办法去评估一本杂志和一位科学家的在学术领域的影响,在科学(统计?)意义上其实无可厚非。可问题在于,好事者和官僚主义者,无论是懂科学的还是不懂科学的,在利益的驱使下鼓吹和推广这些东西,让这样一些科学的方法变了质,直至IF现在成了人上人们拿在手里的生死令牌。这些事情,打个不恰当的比方,核聚变这个东西在实验室里发现的时候当然是很酷的科学,可万一恐怖分子拿个核弹在手里到处晃点就绝对不有趣了。

做科学的每个人心中都有一杆秤,什么杂志最好什么杂志OK什么杂志烂心里都有数。而发了一辈子的Macromolecules/JPC而绝不肯染指JACS更不鸟Angew的老板们大有人在。可是曾几何时,这"IF"却似乎已经深入人心;大家发文章的时候都要看看IF多高似乎已经成了习惯。

简单地看看这个问题:

"Cell"真的比"JACS"好?
"Nano Letters"真的比"JACS""Phys. Rev. Lett."好?
"Adv. Mater."真的比"Chem. Mater.""JOC""JPC""Macromolecules"好?
"Annu. Rev. Immunol."真的比"Chem. Rev."好?

IF排杂志也就罢了,现在居然冒出来这个H-Index出来给人排名打分,给科学人量化。大家看看笑过也就算了,居然还有大张旗鼓欲将其推广,并且即将或者已经成为招聘指标之一,不仅是让人哭笑不得,而且绝对误人子弟。
  • 我做的纳米科学就比你做的力学重要?不见得。
  • 我发在Nature的文章就比你发在"Journal of Materials Research"的文章牛X?更不见得。
  • 我现在引用1000次的文章就比你现在引用只是10的文章重要?还是不见得。
远的不说,看看纳米领域:
  • Younan Xia比Peidong Yang和Hongjie Dai的H-Index高~10个点数能说明什么问题?
  • 讨论George Whitesides、Richard Smalley、甚至Charlie Lieber谁的H-Index高有意义吗?
看看中国科学界,IF自然鼓励大家做好科学、往好的杂志投文章;可由此而来和科研基金和个人得失相关带来的虚浮的风气除了让人恶心,真是找不出其他恰当的字眼。这H-Index的出现,我只是担心有更加危险和毁灭性的后果。大家不要以为我是吃不到葡萄说葡萄酸:本人的H-Index目前也有20,在"young yet established scientists"里不算太低的了吧。只是隐约中,我似乎已经看到不久的将来,某些不是做纳米和生物的科学家们,年轻的,年老的,呆呆地坐在自己的办公桌前,看着面前将他们一生追求的东西用简单的算术公式定量的H-Index - 那些与他们的工资、奖金、基金、职位息息相关的无比荒唐的数字。

在浩瀚的未知面前,我骄傲地觉得自己无比渺小;在这为排名而疯狂的“科学”世界,我却悲哀地觉得自己同样的渺小。

但愿我错了。

Thanks for reading.

豆腐文摘:09/10/07

Chemistry - A European Journal
1. Self-Assembled Single-Walled Carbon Nanotube:Zinc-Porphyrin Hybrids through Ammonium Ion-Crown Ether Interaction: Construction and Electron Transfer (p NA)
Francis D'Souza, Raghu Chitta, Atula S. D. Sandanayaka, Navaneetha K. Subbaiyan, Lawrence D'Souza, Yasuyuki Araki, Osamu Ito
Published Online: 12 Jul 2007 DOI: 10.1002/chem.200700583
Abstract References Full Text:PDF (Size: 467K)

2. Grafting Living Polymers onto Carbon Nanohorns
Grigoris Mountrichas, Stergios Pispas, Nikos Tagmatarchis
2007, 13 (27), 7595-7599.
Published Online: 3 Aug 2007 DOI: 10.1002/chem.200700770
Abstract References Full Text: HTML, PDF (Size: 302K)

【简评】把碳管身上开发出来的东西弄到碳角(nanohorn)上,看起来直接简单,但是要看什么人做。这几位希腊同胞(Tagmatarchis曾在Prato组)东西似乎是做出来(黑乎乎的溶液),但是表征不但肤浅,而且绝对糊里糊涂;跟最初的几篇高分子接枝碳管的文章相比,这“第一篇”高分子接枝碳角的文章简直是耻辱。此文居然还上了封面,看来多卖几本杂志、能有更高的Impact Factor等等比科学本身的意义要大得多。

3. Spontaneous Coating of Carbon Nanotubes with an Ultrathin Polypyrrole Layer
Martin Pumera, Betislav míd, Xinsheng Peng, Dmitri Golberg, Jie Tang, Izumi Ichinose
2007, 13 (27), 7644-7649.
Published Online: 25 Jun 2007 DOI: 10.1002/chem.200700211
Abstract References Full Text: HTML, PDF (Size: 259K)

【简评】有什么很特别的地方吗?不就是已经做了有9年的把碳管放到单体溶液中再聚合的in situ polymerization?这还被称为novel process?基本的文献都没有引用,真不知道怎么通过评审的。

[补:我在2004年的collection - in situ polymerization]

[The earliest one (!!)]

Tang, B. Z.; Xu, H. Macromolecules 1999, 32, 2569.

[Other memorable ones]

Polyaniline: (a) Cochet, M.; Maser, W. K.; Benito, A. M.; Callejas, M. A.; Martinez, M. T.; Benoit, J.-M.; Schreiber, J.; Chauvet, O. Chem. Commun. 2001, 1450. (b) Zengin, H.; Zhou, W.; Jin, J.; Czerw, R.; Smith, D. W.; Echegoyen, L.;Carroll, D. L.; Foulger, S. H.; Ballato, J. Adv. Mater. 2002, 14, 1480. (c)Feng, W.; Bai, X. D.; Lian, Y. Q.; Liang, J.; Wang, X. G.; Yoshino, K.Carbon 2003, 41, 1551.

Polystyrene: (a) Barraza, H. J.; Pompeo, F.; O’Rear, E. A.; Resasco, D. E. Nano Lett. 2002, 2,797. (b) Shaffer, M. S. P.; Koziol, K. Chem. Commun. 2002, 2074.

PMMA:(a) Velasco-Santos, C.; Martinez-Hernandez, A. L.; Fisher, F. T.; Ruoff, R.;Castano, V. M. Chem. Mater. 2003, 15, 4470. (b) Xia, H.; Wang, Q.; Qiu, G. Chem. Mater. 2003, 15, 3879. (c) Park, S. J.;Cho, M. S.; Lim, S. T.; Choi, H. J.; Jhon, M. S. Macromol. Rapid Commun. 2003, 24, 1070.Polyimide: Park, C.; Ounaies, Z.; Watson, K. A.; Crooks, R. E.; Smith, Jr. J. E.; Lowther, S.E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; St. Clair, T.L. Chem. Phys.Lett. 2002, 364, 303.

Poly(p-phenylene benzobisoxazole) (PBO):Kumar, S.; Dang, T. D.; Arnold, F. E.; Bhattacharyya, A. R.; Min, B. G.; Zhang,X.; Vaia, R. A.; Park, C.; Adams, W. W.; Hauge, R. H.; Smalley, R. E.;Ramesh, S.; Willis, P. A. Macromolecules 2002, 35, 9039.

Polypyrrole:(a) Fan, J.; Wan, M.; Zhu, D.; Chang, B.; Pan, Z.; Xie, S. Syn. Met. 1999, 102,1266. (b) Fan, J.; Wan, M.; Zhu, D.; Chang, B.; Pan, Z.; Xie, S. J. Appl.Polym. Sci. 1999, 74, 2605.

J. Mater. Chem.
Graphite-like carbon-encapsulated iron nanoparticle self-assembly into macroscopic microtube structures
Zhenyu Liu, Lijie Ci, N. Y. Jin-Phillipp and M. Rühle,
J. Mater. Chem., 2007. DOI: 10.1039/b710799d

Macromolecules
Electrical and Rheological Percolation in Polystyrene/MWCNT Nanocomposites
Arun K. Kota, Bani H. Cipriano, Matthew K. Duesterberg, Alan L. Gershon, Dan Powell, Srinivasa R. Raghavan, and Hugh A. Bruck


Web Release Date: 08-Sep-2007; (Article) DOI: 10.1021/ma0711792
Abstract Full: HTML / PDF (233K)

Nano Lett.
Excitonic Effects in the Optical Spectra of Graphene Nanoribbons
Li Yang, Marvin L. Cohen, and Steven G. Louie


Web Release Date: 08-Sep-2007; (Letter) DOI: 10.1021/nl0716404
Abstract Full: HTML / PDF (294K)

Thursday, September 6, 2007

豆腐文摘:09/07/07

JACS:

Chemically Assisted Directed Assembly of Carbon Nanotubes for the Fabrication of Large-Scale Device Arrays

George S. Tulevski, James Hannon, Ali Afzali, Zhihong Chen, Phaedon Avouris, and Cherie R. Kagan

Web Release Date: 07-Sep-2007; (Article) DOI: 10.1021/ja073647t
Abstract Full: HTML / PDF (256K) Supporting Info

JPCC:

1. Water-Assisted Highly Efficient Synthesis of Single-Walled Carbon Nanotubes Forests from Colloidal Nanoparticle Catalysts

Hidekazu Nishino, Satoshi Yasuda, Tatsunori Namai, Don N. Futaba, Takeo Yamada, Motoo Yumura, Sumio Iijima, and Kenji Hata

Web Release Date: 07-Sep-2007; (Article) DOI: 10.1021/jp0723719
Abstract Full: HTML / PDF (337K) Supporting Info

2. Replacement of Transparent Conductive Oxides by Single-Wall Carbon Nanotubes in Cu(In,Ga)Se2-Based Solar Cells

Miguel A. Contreras, Teresa Barnes, Jao van de Lagemaat, Garry Rumbles, Timothy J. Coutts, Chris Weeks, Paul Glatkowski, Igor Levitsky, Jorma Peltola, and David A. Britz

Web Release Date: 06-Sep-2007; (Letter) DOI: 10.1021/jp075507b
Abstract Full: HTML / PDF (172K)

Wednesday, September 5, 2007

综述推荐:SWNT Separation by Metallicity

Small:

Separation of Metallic and Semiconducting Single-Walled Carbon Nanotubes via Covalent Functionalization Stéphane Campidelli, Moreno Meneghetti, Maurizio Prato

Volume 3, Issue 10 (October 1, 2007) (p 1672-1676)

Published Online: 5 Sep 2007; DOI: 10.1002/smll.200700394

Abstract References Full Text: HTML, PDF (Size: 302K)

【简评】这篇Highlight文章完全从第三者的角度客观描述了单壁管按电子性质分离这个新、热、混乱、充满希望的领域的当前进展。虽然三位作者并没有在这个领域发表论文,此文却言简意赅,文字部分意外地相当客观准确,切入要点,绝对可以作为初涉猎者和本领域人员的标准指南(除了Figure 1和TOC画的碳管分类有少许误导嫌疑外)。

纪念Charles Mioskowski博士

图1、Dr. Charles Mioskowski (1947-2007)


果不是今天读到Campidelli/Meneghetti/Prato在"Small"上的Highlight文章(见《综述推荐:SWNT Separation by Metallicity》),我还不知道法国Strasbourg大学的Charles Mioskowski博士已经故去。

对Mioskowski博士的印象完全是从论文上 - 他在纳米管方面的文章一共也就只有5篇(search results from ISI Web of Science, 09/05/07),其中两篇却给我留下不可磨灭的印象:

1. Balavoine, F; Schultz, P; Richard, C; Mallouh, V.; Ebbesen, T. W.; Mioskowski, C. “Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors"Angew. Chem. Int. Ed. 1999, 38 (13-14), 1912-1915.

2. Richard, C; Balavoine, F; Schultz, P; Ebbesen, T. W.; Mioskowski, C. "Supramolecular self-assembly of lipid derivatives on carbon nanotubes" Science 2003, 300, 775-778.

这两篇的内容分别是描述某些蛋白质(Angew.Chem., 1999)和表面活性剂分子(Science, 2003)在特殊条件下用透射电镜观察到的在碳管(主要是多壁管)表面的规整排列。对这两篇文章我其实是含着复杂的情绪:虽说我由于这类漂亮实验的低重复性从而对它的科学性抱着强烈的怀疑,我却非常敬佩作者们的想象力和毅力。


图2、(left) Extracted view from TEM data of streptavidin arrays helically decorated on MWNTs (ref 1); (right) TEM image of ordered decoration of sodium dodecyl sulfate (SDS) on MWNTs (ref 2).



我并没有读过Mioskowski博士的其他文章,但是从这两篇天马行空的文章看,他想必是一个非常浪漫的人物。

愿他的浪漫的气质能够感染我们这些凡人,让我们永不停止对未知的想像和摸索。


愿Mioskowski博士的灵魂在天堂安息。

**********************

【以下文字来自IBAAC网站】:

Charles Mioskowski has passed away

Charles Mioskowski has passed away on June 2nd, 2007.

Charles Mioskowski passed away on June 2nd, 2007 at 60 years old. He fought illness bravely and with dignity for about 2 years. He was an exceptionally gifted research director working at both the University of Strasbourg and at CEA Saclay. Charles Mioskowski was an outstanding researcher with national and international renown encompassing both industry and academia. He worked in numerous fields of chemistry, including techniques in organic synthesis, total synthesis of biological target molecules, catalytic antibodies, applied chemistry in structural biology, nanosciences, combinatorial chemistry and high-throughput screening.

After graduating from the Strasbourg School of Chemistry, Charles Mioskowski began his research career with a thesis in organic chemistry at Strasbourg University. After a post-doctoral fellowship in the laboratory of Professor E.J. Corey (winner of the 1990 Nobel Prize in Chemistry) at Harvard University, he returned to France in 1985 to set up and run a laboratory at the Strasbourg Faculty of Pharmacy (University Louis Pasteur). In 1991, he was also named director of the Department of Molecular Labelling and Bio-organic Chemistry at the CEA’s Saclay-based Institute of Biotechnologies (iBitec-S).


Charles Mioskowski had published over 350 publications and launched 25 patents, and had won a number of prizes and awards, including A CNRS bronze medal, the French Academy of Sciences Jungfleich award, the German Chemistry Society’s Grignard-Wittig Award, the French Chemistry Society’s Le Bel prize, or the French Society of Medicinal Chemistry Charles Mentzer Prize.

Open-minded and a top-class tutor, Charles Mioskowski continued to teach in a number of universities (including Strasbourg and Paris XI - Orsay) throughout his career. His expert skills were passed on over a hundred young researchers, most of whom have gone on to take key academic or industry research roles. Indeed, it is through a whole generation of researchers that his passion, his enthusiasm will live on.



Charles Mioskowski was a major founder of the IBAAC network and an important contributor to the project. He was greatly appreciated by his colleagues both as a brilliant scientist and as a pleasant man. He will be deeply missed.

豆腐文摘:09/05/07

ACS Nano:

Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery
Zhuang Liu, Xiaoming Sun, Nozomi Nakayama-Ratchford, and Hongjie Dai

August 2007 Vol. 1, Iss. 1
Web Release Date: 14-Aug-2007 pp. 50-56 DOI: 10.1021/nn700040t
Read: Abstract Full Text HTML Full Text PDF (1,225k) Supporting Info

【简评】

虽然这是我看的唯一一篇ACS Nano这个新杂志的文章,我不得不说,Dai博士给这个杂志做出了吓人的榜样。编辑们大概会很高兴,因为这样一来没有两把刷子和足够工作量的文章是不会乱投过来的。

文章讲述用水溶性(已经PEGylated)的碳管表面非共价地沾上DOX - 一种著名的抗癌药 - 并进行输送和释放(不同温度、不同pH、in vitro)的研究。文章的卖点虽然不是Dai博士在文章里鼓吹的那么最新(比如双(多)功能化的概念至少在Prato和Liming Dai两位的文章里都详细表述过),但是文章的综合性之强、工作量之大还是让人咂舌。

赞歌打住,开始挑刺。

最大的刺在于比较功能化的laser ablation的SWNT和HiPco-SWNT的DOX释放性质:他们发现laser ablation的管子(直径~1.4 nm)和DOX的pi相互作用似乎比HiPco(直径0.7-1.2 nm)更强。文章立即把这个定性为两种管子直径(表面弧度)的差别所致(语气太肯定,似乎完全没有留下余地)。我并不是说这种说法没有道理,但是其他还有很多可能性。最直接的就是laser ablation管子表面通常缺陷较少(当然比HiPco少得多),那么理所当然地pi相互作用会强。另外,两种管子PEGylate程度不同也许会导致DOX的释放差异。等等。这样武断地做结论只能是误导读者。

还有,我到现在还完全不能理解pi相互作用和疏水作用导致的非共价碳管功能化产物:这种非共价结合难道不是一个平衡过程?如果确实是,那么永远都无法将"free"的功能化分子除净(文中不止一次提到"thoroughly removed") - "free"的功能化分子在被洗去时,在碳管表面的分子就会由于平衡同时不断脱离,一直到大家(包括碳管表面)都被彻底洗净为止。谁可以来解释一下这个问题?

当然还有不少小问题,没时间一一列出了。


Advanced Functional Materials:
Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes (p NA)
J. Li, P. C. Ma, W. S. Chow, C. K. To, B. Z. Tang, J.-K. Kim
Published Online: 5 Sep 2007 DOI: 10.1002/adfm.200700065
Abstract References Full Text:PDF (Size: 628K)

JPCC:
Synthesis of Colloidal PbSe/PbS Core-Shell Nanowires and PbS/Au Nanowire-Nanocrystal Heterostructures
Dmitri V. Talapin, Heng Yu, Elena V. Shevchenko, Arun Lobo, and Christopher B. Murray
Web Release Date: 05-Sep-2007; (Letter) DOI: 10.1021/jp074319i
Abstract Full: HTML / PDF (10452K) Supporting Info

Tuesday, September 4, 2007

豆腐展望: Graphene Chemistry

From Nanotubes to Nanosheets: The New Horizon of Graphene Chemistry
Carbon nanotubes are cousins of graphite, diamond, and fullerene C-60. The chemistry of these tubular structures has been more or less established, since their discovery and more intensely over the past decade, mostly according to the existing knowledge of those other carbon allotropes. Among the chemistries being explored, those rendering the nanotubes soluble were of special interest, since they opened up a whole new playground to process these materials and to maximize their magic properties for applications.

Carbon nanotubes may be viewed as rolling up of single pieces of graphenes. To physicists, the tubular structure itself is interesting; moreover, the "opened" ones - the "nanostrips" - also become intriguing. So what are the nature of these carbon nanostrips? This does not need the talent of Einstein's to answer. Carbon nanostrips, so to speak, are just pieces of graphene.

Since graphite (millions of layers of graphene) is a long-time acquaintance to us, the "re-discovery" of the material brings us new perspective to re-look into the chemistry of graphene: Can we make soluble carbon nanostrips/nanosheets/nanoplatets? What will the composites behave if we incorporate single graphene nanosheets? How do the sizes of nanosheets matter? What could be the applications which currently somewhat rely on the uncertain hype of carbon nanotubes?

Fortunately, for chemists, the graphite chemistry has more or less established, so does the carbon nanotube chemistry. The graphene chemistry is thus taking its initial warm-up, with publications addressing fundenmental chemistries/composite properties already emerged. In the following years, we shall witness enormous development in this exciting new field of nanoscience and science as a whole, just like we did in the carbon nanotube chemistry.

Thanks for reading.



IMAGE COURTESY:
http://www.msm.cam.ac.uk/phase-trans/2005/SWpaper/index.html

豆腐文摘:09/04/07

Journal of Materials Chemistry:

Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents
Dongyu Cai and Mo Song
J. Mater. Chem., 2007, 17, 3678. DOI: 10.1039/b705906j



【简评】
对薄层石墨((few-layer) graphene, graphite/carbon nanoplatelets/nanostrips/nanoxxxx, )的研究近一两年来突然引起了大家的注意。虽说这是部分筒子对碳管化学长期战线的近乎绝望,但主要还是因为对碳管电性能的深入研究中突然发现薄层石墨(可以看成把碳管从中间剪开后再摊开的所谓carbon nanostrip)的电性能也有相当突出的地方(单层石墨的二维导体vs 单壁碳管的一维导体/半导体):大家都是石墨层,所以并且在电子传输的效率方面绝不逊于碳管。石墨学搞了几十年了,在二十一世纪的今天居然迎来了第二春,真是可喜可贺。

说回到这篇文章。Expandable graphite (EG,又称exfoliated graphite),“膨胀石墨”,就是已经预先剥层涨层的石墨。在这篇简洁的通讯里,作者们用Hummer's Method(做石墨层间嵌入的传统办法,基本上就是高锰酸钾+浓硫酸+硝酸钠)处理EG,然后在DMF里一超声,便得到了相对稳定的石墨在DMF中的悬浮液。TEM/XRD的证据似乎表明大部分的EG都分散为单层(或寡层)石墨。

因为之前的文章做有机溶剂中的单层或寡层石墨时都要做二次化学反应(比如还原或接上有机官能团),文章说:"To the best of our knowledge, this communication is the first report that chemical treatment of GO (i.e. graphite oxide) is not necessary for obtaining GONPs (i.e. graphite oxide nanoplatelets) in organic solvents."

这句玩文字游戏的话却看起来让人很不舒服。这句话本意大概是“把EG(而不是普通石墨)做成的GO (就是graphite oxide,石墨氧化后的产物)可以不经过进一步化学处理而直接就可以在DMF里悬浮起来,因为没有人做过,所以是创新的头一回”。可是因为Hummer's Method本身就是非常剧烈的化学处理过程,所以强调这略去的后续化学手段有多大的里程碑式的意义真是有待商榷。

再者说,EG并非从天上掉下来的,也是通过一系列成熟的(工业级)化学处理从普通石墨来的。所以平心而论,无论用EG做石墨源用Hummer's Method附带超声,都实在算不上"the first"。

文章是好文章,但像这样强行把自己往高里拔,不妥。